In Vitro Assessment of Nanosilver-Functionalized PMMA Bone Cement on Primary Human Mesenchymal Stem Cells and Osteoblasts
نویسندگان
چکیده
Peri-prosthetic infections caused by multidrug resistant bacteria have become a serious problem in surgery and orthopedics. The aim is to introduce biomaterials that avoid implant-related infections caused by multiresistant bacteria. The efficacy of silver nanoparticles (AgNP) against a broad spectrum of bacteria and against multiresistant pathogens has been repeatedly described. In the present study polymethylmethacrylate (PMMA) bone cement functionalized with AgNP and/or gentamicin were tested regarding their biocompatibility with bone forming cells. Therefore, influences on viability, cell number and differentiation of primary human mesenchymal stem cells (MSCs) and MSCs cultured in osteogenic differentiation media (MSC-OM) caused by the implant materials were studied. Furthermore, the growth behavior and the morphology of the cells on the testing material were observed. Finally, we examined the induction of cell stress, regarding antioxidative defense and endoplasmatic reticulum stress. We demonstrated similar cytocompatibility of PMMA loaded with AgNP compared to plain PMMA or PMMA loaded with gentamicin. There was no decrease in cell number, viability and osteogenic differentiation and no induction of cell stress for all three PMMA variants after 21 days. Addition of gentamicin to AgNP-loaded PMMA led to a slight decrease in osteogenic differentiation. Also an increase in cell stress was detectable for PMMA loaded with gentamicin and AgNP. In conclusion, supplementation of PMMA bone cement with gentamicin, AgNP, and both results in bone implants with an antibacterial potency and suitable cytocompatibility in MSCs and MSC-OM.
منابع مشابه
In vitro effect of Nanosilver toxicity on fibroblast and mesenchymal stem cell lines
Nanotechnology presents countless opportunities to develop new and improved consumer products for the benefit of the society . A most prominent nanoproduct is nanosilver. Nanosilver particles are generally smaller than 100 nm and contain 20–15,000 silver atoms. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health. In the ...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملIn vitro effect of Nanosilver toxicity on fibroblast and mesenchymal stem cell lines
Nanotechnology presents countless opportunities to develop new and improved consumer products for the benefit of the society . A most prominent nanoproduct is nanosilver. Nanosilver particles are generally smaller than 100 nm and contain 20–15,000 silver atoms. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health. In the ...
متن کاملEvaluation of In Vitro Differentiation of Cardiomyocyte-like cells Derived from Human Bone Marrow Mesenchymal Stem Cells
Purpose: To investigate the in vitro differentiation process of cardiomyocyte-like cells derived from human bone marrow mesenchymal stem cells under the influence of 5-azacytidine (5-aza). Materials and Methods: After purification, human bone marrow mesenchymal stem cells were exposed to 5-aza at a concentration of 5 μmol for 5 weeks to induce cardiomyocyte differentiation. To induce differenti...
متن کاملIn vitro assessment of alendronate toxic and apoptotic effects on human dental pulp stem cells
Objective(s): Osteonecrosis of the jaw, as an exposed necrotic bone in the oral cavity, is one of the adverse effects of bisphosphonates, which have an affinity for bone minerals. This study investigates the cytotoxic effects of alendronate (ALN) as a nitrogen-containing bisphosphonate, on human dental pulp stem cells (hDPSCs). Materials and Methods: The mesenchymal stem cells (MSCs), obtained ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014